Convexity of the Joint Numerical Range
نویسندگان
چکیده
We consider linearly independent families of Hermitian matrices {A1, . . . , Am} so thatWk(A) is convex. It is shown that m can reach the upper bound 2k(n− k) + 1. A key idea in our study is relating the convexity of Wk(A) to the problem of constructing rank k orthogonal projections under linear constraints determined by A. The techniques are extended to study the convexity of other generalized numerical ranges and the corresponding matrix construction problems.
منابع مشابه
A note on the convexity of the indefinite joint numerical range
This note investigates the convexity of the indefinite joint numerical range of a tuple of Hermitian matrices in the setting of Krein spaces. Its main result is a necessary and sufficient condition for convexity of this set. A new notion of “quasi-convexity” is introduced as a refinement of pseudo-convexity.
متن کاملGENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE
The rank-k numerical range has a close connection to the construction of quantum error correction code for a noisy quantum channel. For noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the associated joint rank-k numerical range is non-empty. In this paper the notion of joint rank-k numerical range is generalized and some statements of [2011, Generaliz...
متن کاملGeneralized numerical ranges of matrix polynomials
In this paper, we introduce the notions of C-numerical range and C-spectrum of matrix polynomials. Some algebraic and geometrical properties are investigated. We also study the relationship between the C-numerical range of a matrix polynomial and the joint C-numerical range of its coefficients.
متن کاملConvexity of the Joint Numerical Range: Topological and Differential Geometric Viewpoints
The purpose of this paper is to show that the joint numerical range of am-tuple of n×n hermitian matrices is convex whenever the largest eigenvalue of an associated family of hermitian matrices parameterized by the (m − 1)-dimensional sphere has constant multiplicity and, as a more technical condition, the union over the sphere of the largest eigenvalue eigenspaces does not fill the full n-dime...
متن کاملCalculating Cost Efficiency with Integer Data in the Absence of Convexity
One of the new topics in DEA is the data with integer values. In DEA classic models, it is assumed that input and output variables have real values. However, in many cases, some inputs or outputs can have integer values. Measuring cost efficiency is another method to evaluate the performance and assess the capabilities of a single decision-making unit for manufacturing current products at a min...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 21 شماره
صفحات -
تاریخ انتشار 2000